
Pergamon 

In,. J. Heut Mars Tmsfrr. Vol. 31. No. 7. pp. IIOI-I 109, 1994 
Copyright v; 1994 Elsevier Science Ltd 

Pnnted m Great Britain. All rights reserved 

0017-9310(93)E0030-K 
OOl7-9310/94$6.00+0.00 

Bifurcation phenomenon during the fixed-solid- 
mode melting inside a horizontal cylinder 

SUNG TACK RO and CHARN-JUNG KIM 

Department of Mechanical Engineering, Seoul National University, Seoul 151-742, Korea 

(Received 14 July 1993 and infinalform 27 October 1993) 

Abstract-As for the inward melting inside an isothermal horizontal cylinder, where the unmelted solid 
core is constrained from moving under gravity, two drastically different melting patterns have been reported 
in the literature; the shape of the melting surface in the bottom portion has been observed to be either 
concave or convex. The present work was motivated to elucidate the main cause of these conflicting results. 
This was done first by obtaining the full transient solutions conforming to the model equations, and then 
by introducing the bifurcation times as well as a pair of bifurcating solutions. It was found that the convex 
pear-like melting surface could be well explained in terms of the primary bifurcating solution. Another 
mode of melting, in which the concave crater shape of the melting surface was observed, turned out to be 

also a kind of branching solution to the melting process of interest. 

INTRODUCTION 

CONVECTION-DOMINATED melting problems have been 
extensively studied in various geometric arrange- 
ments. For instance, melting inside an isothermal 
horizontal cylinder has received much attention as a 
model of the latent heat-of-fusion storage system. In 
particular, the inward melting process in which the 
unmelted solid core is constrained from moving under 
gravity has been studied in a number of publications 
[l-3], However, these studies produced drastically 
different melting patterns, especially for the shape of 
the melting surface in the bottom portion. Saitoh and 
Hirose [I] observed experimentally the development 
of a concave bottom surface, whereas Rieger et al. [2] 
as well as Ho and Viskanta [3] observed a convex pear- 
like melting surface for moderate to high Rayleigh 
numbers. The numerical simulations from these stud- 
ies were also strikingly different from one another. 
Despite these results and those of subsequent inves- 
tigations [4, 51, no convincing explanation has been 
offered so far for the conflicting results between 
different investigations on an identical problem. The 
main cause of this discrepancy has been vaguely attri- 
buted to the highly unstable flow circulation present 
in the bottom portion. 

It has been widely known in the literature that the 
solution of the nonlinear Navier-Stokes differential 
systems is not necessarily unique. Such a peculiar 
situation occurs when the thermal instability plays a 
vital role of determining the flow structure, e.g. two- 
dimensional steady-state natural convection in a hori- 
zontal annulus [6, 71. The multiplicity of solutions 
is related to bifurcation phenomena, and has been 
confirmed both numerically [7-IO] and exper- 
imentally [II, 121. 

In recognition of the bifurcation phenomenon 
associated with natural convection problems, Park 

and Chang [I31 suggested that the aforementioned 
conflicting results might be caused by the existence of 
bifurcating solutions. In order to create such dual 
solutions in their enthalpy formulation, they applied 
a small perturbation to the vorticity field when the 
melt gap reached 3% of the tube diameter, and then 
obtained two families of branching solutions at a high 
Rayleigh number ; the flow pattern of one branching 
solution was bicellular, and the other was tricellular. 
Nevertheless, their analysis could not explain the 
experimental observation [3] that as melting con- 
tinued the multi-cells began to merge together at mod- 
erate melting stage and subsequently the unicellular 
flow pattern became predominant for the rest of melt- 
ing stages. In fact, the pear-shaped solid core which 
was observed in the experiments [2, 31 was a direct 
consequence of the life and death of a pair of sec- 
ondary vortices in the bottom portion. 

In the present study, we presented two families of 

bifurcating solutions to the inward melting process, in 
addition to the numerical solutions that were obtained 
directly from the model equations and boundary con- 
ditions. Both the bifurcating solutions were found to 
qualitatively agree well with the available exper- 
imental results. Several important conclusions are 
drawn here that the conventional model equations 
for the melting process may lead to somehow anti- 
physical solution, and that two conflicting melting 
patterns are all physically possible and imparted by 
the multiplicity of solutions. 

ANALYSIS 

Model equations and boundary conditions 
A schematic of the physical model for melting inside 

a horizontal cylinder of radius R, is presented in Fig. 
I. The cylinder is initially filled with subcooled solid 
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NOMENCLATURE 

;1 
specific heat Greek symbols 
specific enthalpy CI thermal diffusivity 

h,r latent heat of fusion +51, geometric factors 
h,, h,) geometric factors be. fi, geometric factors 
J Jacobian I- exchange coefficient 

mr melt volume fraction 0 dimensionless enthalpy 

NU average Nusselt number 0 angular coordinate 

P pressure 
Pr Prandtl number ;, q 

kinematic viscosity 
transformed coordinates 

R radial coordinate P density 

4 radial position of solid-liquid interface dimensionless time, Ste Fo, Fo = a,t/R: 

RW radius of cylinder ; general dependent variable. 

Ra representative Rayleigh number, 

g/U,- WWv%) 
RaB effective Rayleigh number based on the 

Superscript 

melt gap width 
+ dimensionless. 

SC subcooling number, c,(T,- T,)/h,, 

Ste Stefan number, cL( T,, - T,)/h,, Subscripts 
t time f interface 

TO initial temperature of solid L liquid 

Tr melting temperature solid-to-liquid property ratio 

TW wall temperature : solid 

u, 0 Cartesian velocity components t-u tricellular-to-unicellular transition 

x> Y Cartesian coordinates u-b unicellular-to-bicellular transition 

-% Yl mesh velocities. W cylinder wall. 

(at a uniform temperature T,,). At time t = 0, the 
temperature of the cylinder wall is suddenly raised to 
a fixed value of T, > T,. and melting occurs instan- 
taneously. At early times conduction is the primary 
mode of heat transfer and, therefore, the melting sur- 
face proceeds concentrically. Later, as natural con- 
vection develops and intensifies in the liquid, the 
solid-liquid interface is exposed to a nonuniform heat 

FIG. 1, Schematic diagram of the inward melting process in 
a horizontal cyinder and a grid system of 3 I x 105 resolution 

constructed in the liquid. 

transfer rate and consequently begins to deviate from 
its initial concentric shape, as illustrated in Fig. 1. 

Several simplifications are employed for the analy- 
sis : the melting process is two-dimensional and sym- 
metric with respect to the vertical diameter; the 
unmelted solid core is fixed in space ; the density 
change between the phases is negligible; the liquid is 
Newtonian and the flow is laminar; the thermo- 
physical properties are constant except for the vari- 
ation of density with temperature (the Boussinesq 
approximation). These have been accepted as reason- 
able first-order approximations [l-3]. 

The initial subcooling of solid is also taken into 

account in this study. Accordingly, the relevant field 
variables in both the liquid and solid phases need 

to be resolved in conjunction with the constraints 
specified at the solid-liquid interface. To facilitate 
our analysis, we consider the general conservation 
equation written as 

+ ~(pvg-rgJ = S(X,Y). (1) 

The above equation is repeated for the continuity, 
momentum, and energy equations for the liquid 
phase; and the energy equation for the solid phase. 
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Table 1. Variables in the dimensionless conservation 
equation. The length, time. velocity. pressure and specific 
enthalpies~ are scaled with R,, fl;/cr,, OLJ&, p,a~/R~ and 
r,(T,- Tc), respectively. Here, Pr = 53.84 and a, = 2.876 are 

used for computation 

C$+ l-f s+ 
- 

Solid 0s a, 0 
Liquid 1 0 0 

u+ Pr --;lp’iax_+ 

r+ Pr --dp+/~Zy~+RrrPr@, 

0, 1 0 
--- 

t/l,=CL(TL-Tr)+h,f,/ls=cs(Ts-r,). 

The complete set of governing equations is then 
rendered dimensionless and summarized in Table 1. 

The treatment of the moving interface is effected 
via the boundary immobilization techniques. Accord- 
ingly, a transformed (C, ye) coordinate 

x = -x(5* ‘I, 0, Y = Y(5, ‘1, t) (2) 

is introduced such that the moving interface can be 
immobilized particularly at a constant g-line. Then, 
equation (I) can be transformed into 

v = c$uq - &us - Y, 

Y, = x<yt - yS_q 

u, = (.u,u + &v,c)/Y$. (4) 

Other factors appearing in equations (3) and (4) are 
available in ref. [14]. 

The boundary conditions at the solid-liquid inter- 
face are the constraint of motionless solid, the con- 
tinuity of temperature, and the conservation of the 
mass and energy fluxes, i.e. 

u=v=o (5) 

T, = T, = T, (6) 

(PWL = (PWS (7) 

The additional boundary conditions for the tem- 
perature and velocity fields are 

cylinder wall : T,_ = T,, u = u = 0 (9) 

k?T 
line of symmetry : z = 0, u = 0, 

f3V 
- = 0 (10) 
8.X 

Solution procedure 

In order to highly utilize the geometric con- 
figuration shown in Fig. 1, the polar coordinate was 
selected as a subsidiary system : 

where 

x = R sin 0, ?‘= -RcosB (11) 

R= 1 

&5 for0 < 5 < 1 

R,+(c$--l)(R,-RR,) for1 <9<2 (12) 

0 = q for 0 <q < IE. (13) 

It should be noted that this polar coordinate does not 
participate in the discretization procedure but is used 
only in deploying the computational control volumes. 
In the transformed (I$ q) coordinate, the moving inter- 
face is immobilized at 5 = 1 for all times. 

A nonunifo~ grid system of 31 x 105 resolution 
was selected in each phase and used for computation. 
In the left-half of Fig. 1, the grid system constructed 
in the liquid domain is illustrated. As shown there, 
computational cells are densely spaced along the bot- 
tom portion and near the walls, expecting large gradi- 
ents of field variables to occur in those regions. The 
selection of such a refined grid system was based on 
the fact that the number of nodes in the angular direc- 
tion was of great importance in simulating the bifur- 
cation phenomenon [7]. 

The discretization procedure followed in this study 
has been well documented elsewhere [14], thus obvi- 
ating detailed explanation. Specifically, the mesh vel- 
ocities arising from the coordinate transformation 
were treated in accord with the area rule [ 14, 151 so 
as to satisfy the global mass conservation. To avoid 
the initial singularity, a thin liquid layer of uniform 
thickness O.OlR, was assumed to exist and com- 
putation commenced thereafter. The interface move- 
ment was treated explicitly and controlled by using a 
variable time step. Further details on the interface- 
identifying procedure can be found in refs. [14-161. 
Especially, due to an explicit treatment of interface 
movement, the time increment per each marching was 
required to be chosen properly. For this reason, the 
balance between the net change in the stored energy 
and the total amount of heat passed through the wall 
was checked at each time step. It was found that when 
the maximum changes in phase thicknesses over each 
time interval were monitored to be less than 0.3% the 
energy conse~ation was satisfied to within 0.05%. 

RESULTS AND DISCUSSION 

Preliminary results : the jiuli transient solution 

The previous analytical results [l-3] on the inward 
melting in a horizontal cylinder are all based on an 
identical set of governing equations and boundary 
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Table 2. The numerical approaches adopted in the earlier studies and in the present study 

Grid Quasi-steady Shape of the 
resolution Basic formulation assumption solid core 

Saitoh and Hirose [l] 18 x 14 
Reiger et al. [2] 21 x 31 
Ho and Viskanta [3j 13 x 21 
This work? 31 x 105 

Stream function-vorticity 
Stream function--vorticity 
Stream fun~tion~vorticily 

Primitive variable 

Yes 
NO 

Yes 
No 

Concave 
Convex 
Convex 
Convex 

t Full transient solution. 

conditions, as are repeated herein. Nevertheless, the 
numerical predictions from the earlier investigations 
are substantially different from one another, as far as 
the melting pattern in the bottom portion is 

concerned. Motivated by this, we decided first to 
examine the influence of the grid resolution on the 
melting pattern, As a preliminary step, Table 2 pre- 
sents a brief comparison of the nume~cal approaches 
between the existing studies and this work. It is note- 
worthy that the quasi-steady assumptions have been 
employed in refs. [I, 31, i.e. a sequence of steady-state 
natural convection in the melt is determined over a 
number of quasi-static periods of time, during which 
the interface remains fixed [3]. The quasi-steady 
assumptions, although widely used in the analysis of 

melting problems, would invoke an ambiguity if a 
multiple number of steady-state solutions exist. 

Disregarding the different grid resolutions, our 
numerical approach seems to be closer to that of 
Rieger et al. [2] in a sense that ail the transient terms 
and the mesh velocities are included in the compu- 
tation. In this respect, the numerical solution con- 
forming to the aforementioned model equations will 
be referred to as the full transient solution hereinafter. 

As an illustration of the full transient solution cor- 
responding to a high Ra number, Fig. 2 exposes the 
distribution of streamlines and isotherms at an instant 
of time. It is evident that a pair of secondary counter- 
rotating cells coexist with a major recirculating flow 
in the melt. Although not shown in Fig. 2, our full 
transient solution revealed that the flow pattern was 
initially unicellular (due to the conduction domi- 
nation at early melting) and subsequently transited to 
tricellular. The tricellular flow pattern shown in Fig. 
2 was found to persist up to near complete melting. It 

FIG. 2. The full transient solution at z = 0.029 for the case 
of Ra = 1.2 x 106, Ste = 0.133 and & = 0.004. 

can be recognized that our full transient solution is 
qualitativeIy similar to that from Rieger ef at. f2], but 
still disagrees with the experimental observation of 
Ho and Viskanta [3] in which the transition from 
tricellular to unicellular pattern was detected at a 

moderate melting stage. However, the multicellular 
flow pattern has not been numerically predicted in Ho 
and Viskanta [3], due probably to the coarse grid 
system used (see Table 2). 

By re-examining the melting process for a high Ra 
case with a refined grid system, the following con- 
clusions are drawn. 

l The use of a coarse grid system prevents the 
multicellular flow pattern from being predicted. 

l The tricellular flow pattern of the full transient 
solution prevails over most of the melting process, 
except short periods of the initial and final stages of 
melting. 

l No matter how dense the grid system may be, 
the full transient solution would fail to simulate the 
tricellular-to-unicellular transition at moderate melt- 
ing stage, which has indeed been observed exper- 

imentally [3]. 

At this point, it is suspected that the foregoing 
model equations and boundary conditions are too 
much idealized to account for the potential insta- 
bilities associated with the natural convective heat 
transfer considered here. 

Multiplicity ofstead.v-state solutions 
A wide variety of experimental or numerical evi- 

dences are available in the literature that indicate a 
multiplicity of solutions to natural convection prob- 
lems. For example, Rao et al. [8] demonstrated that 
the bifurcating solutions to the natural convection in 
a porous annulus yielded better agreement with the 
reported experimental data. For spherical concentric 
annuli, Caltagirone et af. [9] show that the inner- 
heated case is mathematically equivalent to the 
inner-cooled one. In fact, the melting process con- 
sidered here bears a close resemblance with the natural 
convection in an inner-cooled annulus. 

In what follows, the possibility of a multiplicity of 
steady-state natural convection solutions is examined 
in connection with our full transient solutions. For 
this purpose, a large number of steady-state runs are 
made for a fixed Ra and for a series of geometric 
configurations that are recorded from the full tran- 
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FE. 3. The supplementary steady-state branching solutions corresponding to the same Rayleigh number 
and geometry as in Fig. 2. 

Gent solutions (with an interval of Ar = 0.001). It is 
well known in the bifurcation literature that the initial 
guesses play a decisive role of determining which of 
branches the converged solution is led to. Therefore, 
three different types of the initial guesses were tried to 
obtain steady-state solutions in the following manner. 

l Type I : linear temperature profile in the <-direc- 
tion and a stagnant flow. 

l Type II : temperature field including an upward 
velocity in the lower symmetry line (i.e. at 0 = 0), 
being an analogous approach to that used in ref. [7]. 

l Type III : temperature and velocity distributions 
from the full transient solution, which is no more than 
the quasi-steady assumption mentioned earlier. 

Figure 3 displays three different modes of the 
steady-state solutions corresponding to the case 
where the geometry and the Rayleigh number are the 
same as in Fig. 2. As expected, the steady-state 
solution from Type III appears very similar to the full 
transient solution in Fig. 2. 

The occurrence of a multiplicity of steady-state 
solutions, as shown in Fig. 3, relies strongly on the 
gap size between the interface and the wall. This is 
because the effective Rayleigh number based on the 
gap width (say RaJ has a dominant influence on the 
flow bifurcation. For the present problem, the gap 
width (thus the effective Rayleigh number) varies with 

time. Therefore, we consider here the critical time 
(instead of the critical Ra,) after which two or more 
steady-state solutions come into existence. The pro- 
cedure followed in this study is explained with the aid 
of Fig. 4 where the thicker line represents the path 
traced by the full transient solution. Within this sche- 

matic diagram, the three different branching solutions 
shown in Fig. 3 can be conveniently denoted by the 
hatched circles on dotted lines. The converged steady- 
state solutions at hatched circles were first used as the 
initial guesses to determine new steady-state solutions 
corresponding to the hatched squares (i.e. lower Ra, 

case). Moving left little by little in this way, the first 
bifurcation point was found at point D. This means 
that both the initial guesses of Types I and III, after 
final convergence, end up with the same tricellular 
flow pattern. In a similar way, the second bifurcation 
point was also found, as designated by point B in Fig. 
4. Several features in Fig. 4 are addressed below. 

l Only unicellular steady-state flows can exist 
below point B because the effective Rayleigh number 
Rad is too low to allow for any thermal instability. 

l The bicellular steady-state solution precedes the 
tricellular one. Apart from the different medium and 
geometric configuration considered, Rao et al. [8] also 
reported that as Ra, increased the bicellular flow was 
first observed and then the tricellular flow started to 

G Secondary 
bice,,u,ar )_ bifurcating 

solution 

) 
‘c-0.008 0.010 0.022 0.029 z 

FIG. 4. A bifurcation map for the inward melting process. The parameter values are Ra = 1.2x 106, 
Ste = 0.133 and SC = 0.004. 
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appear with further increase in RQ (see Fig. 7 in their 
work). 

l No unicellular steady-state solution exists 
between points C and D. For a narrow annulus filled 
with air (6 - O.lSR, and Pr = 0.7), Powe et al. [17] 
detected experimentally the transition from uni- 

cellular to multicellular flow as Ra, was increased up 
to Ran - 4000. Our full transient solution at 7 = 0.011 
showed that the melt thickness at 0 = 0 was about 
6 - 0.14R,, or, in terms of the effective Rayleigh 
number. about Ra, - 3300. Despite the different Pr 

numbers, this value remains of the same order with 

the critical RQ from Powe et ul. [ 171. 
l The unicellular steady-state solutions show up 

again above point D. This is mainly due to the increase 
in the gap width. The unicellular flow pattern has been 
most frequently encountered in the previous exper- 
imental investigations on the natural convection in 
wide annuli (e.g. Kuehn and Goldstein [ 181). 

Now, we arc at the point of disclosing the reason 
why the full transient solution fails to simulate the 
flow transition (from tricellular to unicellular) at mod- 
erate melting with high Ra. In obtaining the full tran- 
sient solution, the converged tricellular solution (e.g. 
point D in Fig. 4) was consecutively used as the start- 
ing solution for the next time step, in a loop style. Since 
the final converged solution to natural convection 
problems depends primarily on its starting solution, 
the tricellular ilow pattern was forced to be preserved 
up to near complete melting (no matter whether or 
not the converged solution went beyond its physical 
reality). However. it should be emphasized that the 
initial transition to tricellular pattern at early melting 
(point C in Fig. 4) occurred naturally due to the effect 
of a small gap. Such a transition is believed to be an 

inherent nature of the melting process at high Ra, and 
can be indirectly confirmed from the discussions of 

Rao et al. [6] and Powe et al. [17]. 
From the above results, we conclude that the mere 

numerical integration of the governing equations does 
not necessarily reflect its physical counterpart but may 
lead to anti-physical or artificial solutions, as is the 
case with the full transient solution. In the next sub- 
section, we present two bifurcating solutions that can 
be ramified from the full transient solution. Although 
the bifurcating solutions introduced below may 
require further refinement. it is found that they are 
physically more meaningful than the full transient 
solution and agree much better with the available 
experimental results. 

Bifurcutiny solutions 
The bifurcation map shown in Fig. 4 reveals that 

there can exist two bifurcation times ; one corresponds 
to the transition from the tricellular to unicellular flow 
pattern, and the other corresponds to the unicellular- 
to-bicellular flow transition. The exact values of these 
bifurcation times. T! u and z,_,,, were not accurately 

determined due to slow convergence but located 

within an uncertainty interval of AT = 0.001. Such a 
slow convergence near the bifurcation point was also 
reported elsewhere [7, 81. 

Assuming that the onset of thermal instability is 
induced from the bifurcation point, the primury b&r- 

cutiny solution is defined to initiate from point D in 
Fig. 4. When t = t, u is reached. the field variables 

from the full transient solution are completely dis- 
carded and replaced by those from the unicellular 
steady-state solution. Then, the typical computation 
subject to our formulation is resumed thereafter. 
(Such a manipulation represents a numerical imi- 

tation of the flow transition. although the actual tran- 
sition of the flow pattern would proceed gradually 
over a period of time.) Though started from the same 
point, the primary bifurcating solution, with its 
altered temperature distribution, begins to deviate 
from the path that would be followed otherwise. 
Accordingly, the primary bifurcation solution is 
schematically represented by a thin solid line in Fig. 
4. In a similar manner, the secondury bifkrcutiny solu- 

tion is also introduced from the moment of T = z, h. 
An example of the primary and secondary bifur- 

cating solutions as well as the full transient solution 

is shown in Fig. 5 for the case of Ra = 3.6 x 105, 
Ste = 0.045 and S,- = 0.004. It is readily observable 
that the full transient solution transits to unicellular 
near the completion of melting (at T = 0.09). Note 
that this large-time solution has never been presented 
in the earlier studies [l&3]. It can be seen that the 
primary bifurcating solution results in a quite stream- 
lined shape as melting continues. This is well con- 
sistent with the experimental data of Ho and Viskanta 
[3]. Also, Riegcr et ul. [2] reported that both at 
Ru z 10’ and at Ru z 10” the secondary vortex cir- 
culation occurred in the lower melt region, which is 
again in accord with our primary bifurcating solution. 
Of further interest is that the numerical and exper- 
imental results of Saitoh and Hirose [I] agree quali- 
tatively with our secondary bifurcating solution. 

&cts of Ru und SC on h~f~rcutior~ phenomenon 

The bifurcating solutions are also oblained for 
Ru = 1.2 x 10h, Ste = 0.133 and Sc = 0.004. For this 
case. Fig. 6 exhibits the timewise progression of the 
fluid flow and temperature distribution corresponding 
to both the full transient and two bifurcating 
solutions. The primary bifurcating solution at high 
Ra is qualitatively similar to that shown in Fig. 5. 

As the Rayleigh number decreases, the time at 
which the bifurcating solutions occur is delayed 
because of the decrease in the effective Rayleigh num- 
ber. However, there should exist a critical Ru below 
which no bifurcation solutions are possible at all. 
For example, in an extreme case of Ru + 0, the fluid 
motion completely ceases and thus no bifurcation will 
take place. Actually, for a very small Ru (e.g. 
Ru = I x IO’. Ste = 0.045 and SC = 0.004 ; since this 
small Ru case is out of the practical range of the 
thermal energy storage system, presentation of the 
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secondary 
bifurcating 

solution 

full 
transient 
solution 

primary 
bifurcating 

solution 

7= 0.015 0.029 0.050 0.070 0.090 

FIG. 5. The full transient solution and two bifurcating solutions for the case of Ra = 3.6 x IO’, Ste = 0.045 
and Sc = 0.004. The bifurcation times are t, ,, - 0.016 and t,_, - 0.032. The isotherm lines are drawn with 

equal increment of 0. I (Tu - TJ. 

corresponding results is omitted), it was found that 
the fluid flow remained unicellular at all times and 
thus a well streamlined shape of the interface persisted 
up to near complete melting. 

When the subcooling number alone was increased 

to Sc = 0.1 with other parameters fixed 
(Ra = 1.2 x lo6 and Ste = 0.133), the primary bifur- 
cating solution started at z,, N 0.026. This is because 
the presence of subcooling impedes the development 
of natural convection, thereby delaying the onset of 
thermal instability. Since many of the features associ- 
ated with the subcooling closely resemble the pre- 
ceding results, further discussion regarding the sub- 
cooling effect is omitted here. 

Comparison with the available experimental data 
Figure 7 displays the interface locations at 

7 = 0.011) 0.021 and 0.055 for the case of 
Ra = 1.2 x 106, Ste = 0.133 and Sc = 0.004. The solid 
lines represent the available experimental data that 
were obtained by Ho and Viskanta [3] under nearly 
the same situation specified above. As can be expected, 

the interface location from the primary bifurcating 
solution agrees much better with the experiment than 
does the full transient solution. The experimental 
results clearly show the pear-like shape of the solid 
core at T = 0.055, which is a consequence of the flow 
transition mentioned earlier. Under a similar exper- 
imental circumstance (Ra 2 lo6 and Ste z 0.1) 
Rieger et al. [2] also reported a pear-like but a little 
more blunted shape at z = 0.05. Emphasis is laid here 
on the fact that the reliability of prediction should be 
appraised by the interface location (rather than the 

melt volume fraction) [3]. 
Figure 8 presents another assessment of our pre- 

diction against the available experimental data [3] in 
terms of the melt volume fraction. To quantify the 
significance of the natural convection relative to con- 
duction, pure conduction solutions (i.e. with Ra = 0) 

are also presented in Fig. 8. In general, the predicted 
melting rate agrees well with the experimental data at 
Ra = 3.6 x 10’. However, at high Ra, both the tran- 
sient and bifurcating solutions considerably over- 
estimate the data during the convection-dominated 

secondary 
bifurcating 

solution 

full 
transient 
solution 

primary 
bifurcating 

solution 

FIG. 6. The full transient solution and two bifurcating solutions for the case of Ra = I .2 x 106, Ste = 0.133 
and Sc = 0.004. The bifurcation times are rU b - 0.008 and z,_, - 0.022. 
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FIG. 7. The loci of the melting fronts for Ra = 1.2 x 10h, 
Ste = 0.133 and Sc = 0.004. Ho and Viskanta [3]: exper- 
iment (solid lines) and simulation (cross symbols). The 
present study: the full transient solution (dotted lines) 

and the primary bifurcating solution (dashed line). 

stage. Especially, it can be noted that the primary 
bifurcating solution is closer to the data at 
Ra = 1.2 x I Oh than other solutions. 

The occurrence of bifurcation has a great influence 
on the heat transfer characteristics during melting, 
due to the different flow structures. Figure 9 shows 
the timewise variation of the average Nusselt numbers 
evaluated from 

where 47) and 1 represent the circumferences of the 
interface and the cylinder wall, respectively ; and n is 
normal to the integration path. One thing worthy of 
special remark is the variation mode of Nu,. Our full 
transient solution, regardless of its physical reality at 
late melting, indicates that Nu, varies smoothly with 
time even at high Ra. However, Rieger et al. [2] 
claimed that it underwent an oscillatory variation at 
late melting with high Ra. Furthermore, they asserted 

__ Full transient solution 
-- - Primary bifurcating solution 

.-._--.-- Secondary bifurcating solution 
, . 

o Ra=3.6x105 

FIG. 8. The timewise variation of the melt volume fraction 
with S, = 0.004 for two cases; one for Ra = 1.2 x IO6 and 
Ste = 0.133: and the other for Ra = 3.6x 10’ and 
Str = 0.045. Pure conduction solutions for Sre = 0.133 

(cross symbol) and for Sfe = 0.045 (plus symbol). 

~ Full transient solution 
- - Primary bifurcating solution 

-.---.... Secondary bifurcating solution 

0 0.02 0.04 0.06 0.08 0.1 

z 

FIG. 9. The temporal variation of the average heat transfer 
coefficients. See Fig. 7 for legends. 

that at Ra E lo6 a surprisingly rapid evolution of the 
flow pattern was predicted with a coarse 21 x 31 grid 
system (cf. Fig. 11 in their work). To explain this 
unusual behavior, they postulated that the ther- 
modynamic instability due to three-dimensional effect 
was responsible for such an erratic motion and also 
for the oscillatory variation of Nu, although their 
numerical formulation was restricted to the two- 
dimensional case. In their work, no explicit discussion 
was made on whether their solutions obeyed the 
energy conservation principles to within an acceptable 
tolerance, and on whether their mesh velocities were 
discretized in consistence with the geometric con- 
servation law the failure of which might trigger the 
oscillation and instability problems [ 191. Further- 
more, their numerical treatment was based on the 
central difference approximations that might be en- 
countered with the stability problem at high Ra. 

The discontinuities in both Nu, and NM, curves at 
the onset of tricellular to unicellular bifurcation are 
mainly due to the effect of spontaneous flow transition 
which is numerically imitated here. In order to simu- 
late the flow transition in a more sophisticated way, 
it may be required to impose a small amount of dis- 
turbances to the field variables and continue com- 
putation. However, we expect that even when the flow 
transition is allowed to occur in a period of time, the 
subsequent outcome will agree, at least qualitatively, 
with the present results. 

SUMMARY 

The inward melting process in a horizontal cylinder 
was re-examined here to explain the perplexing dis- 
cord between the existing studies. Our preliminary 
results showed that the full transient solution from the 
model equations could lead to anti-physical solutions 
especially at late melting stage. 

In order to establish more meaningful solutions to 
the inward melting process, a bifurcation map was 
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first drawn by examining whether or not there existed 
a multiple number of steady-state natural convection 
solutions for a series of geometric configurations 

(recorded from the full transient solution). Assum- 
ing the onset of thermal instability at the determined 
bifurcation points, two families of bifurcating 
solutions were introduced. As far as the shape of 
the melting surface in the lower melt region was 
concerned, the primary bifurcating solution was con- 
sistent with the convex pear-like appearance of the 
unmelted solid core, whereas the secondary bifurcat- 
ing solution was associated with the concave shape. 
Due to the existence of these bifurcating solutions, 
the apparently conflicting melting patterns reported 
in the literature were considered to be all physically 
possible. It was also found that the onset of bifurcat- 
ing solutions was initiated earlier as Ra increased and 
as the initial subcooling of the solid phase decreased. 

A more realistic simulation of the present problem 
would call for a three-dimensional analysis in order 
to properly account for the flow transition due to the 
thermal instability of three-dimensional nature. 
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